18/03/2023
Programme de colle S21 : lundi 20 - vend 24 mars
Ondes chap. 4 Ondes linéaires, dispersion, abosrption (Cours et exos)
- méthode générale a été appliquée en cours, mais TD pas encore fait, être indulgent sur la vitesse d'exécution
- insister sur situations où l'équation d'onde n'est pas d'Alembert
- un.e étudiant.e au moins doit (cours ou exo) passer de l'écriture complexe d'une "pseudo-OPPH" à son écriture en réel
- pas prioritaire d'établir les équations de couplage et l'équation d'onde : les donner et en tirer les conséquences physiques. L'établissement des ces équations peut être rejeté en fin d'exo
- dispersion, absorption, vitesse phase et groupe, interprétation physique, raisonnements énergétiques associés
- OPPH à vecteur d'onde complexe : "pseudo-OPPH", savoir proposer une écriture par coeur en complexe
- NB : la distinction atténuation / absorption ne semble pas être au pgm (j'en ai parlé)
- demander à un.e étudiant.e OEM transverse dans plasma peu dense, avec énoncé
- chapitre pas terminé : effet de peau pas encore traité
Ondes chap.3 : OEM dans le vide (Cours et exos)
- Demander à un.e étudiant.e démo structure OEM dans vide (trièdre, rapport des normes, relation dispersion). Démo à faire dans le cas d'une OEM polarisée rectilignement (sinon trop compliqué)
- Demander à un.e étudiant.e aspects énergétiques OPPH pour aboutir à la relation entre Poynting et uem : interprétation physique + relier une valeur numérique de puissance surfacique à l'amplitude du champ E + la relier à un débit de photons
- Demander de reconnaître (par coeur sans justification) un état de polarisation après avoir donné l'écriture mathématique
Ondes chap.2 : ondes sonores dans fluides (Exos)
11:16 Publié dans Colles | Lien permanent | Commentaires (0)
11/03/2023
Programme de colle S20 : lundi 13 - vend 17 mars
Ondes chap.3 : OEM dans le vide (Cours)
- Demander à un.e étudiant.e démo structure OEM dans vide (trièdre, rapport des normes, relation dispersion). Démo à faire dans le cas d'une OEM polarisée rectilignement (sinon trop compliqué)
- Demander à un.e étudiant.e aspects énergétiques OPPH pour aboutir à la relation entre Poynting et uem : interprétation physique + relier une valeur numérique de puissance surfacique à l'amplitude du champ E + la relier à un débit de photons
- Demander de reconnaître (par coeur sans justification) un état de polarisation après avoir donné l'écriture mathématique
Ondes chap.2 : ondes sonores dans fluides (Cours et exos)
- demander à un.e étudiant.e démo d'Alembert 1D, après avoir linéarisé les 3 équations. Doit pouvoir être fait sans énoncé
- NB1 : pour linéariser la déf du coeff de compressibilité (déf à partir de V ou rho, peu importe), je demande aux étudiants de faire Taylor-Young sur rho(P) (S est constante) autour de la situation d'équilibre (P0,S0). De nombreuses versions (livres, cours) me semblent physiquement et mathématiquement très contestables sur ce calcul
- NB2 : la démo "en lagrangien", à partir du mouvement d'une particule de fluide, sera traité en exo
- Ecriture cpx OPPH
- demander à un.e étudiant.e la correspondance entre opérateurs diff et opérateurs cpx (utilisation nabla comme moyen mnémotechnique)
- notion impédance vue uniquement pour OPPH en cpx (pas pour OPP seules)
- demander à un.e étudiant.e démo expression impédance
- Aspects énergétiques : demander l'ensemble des relations par coeurs, puis application à OPPH + interprétation de l'expression de la puissance surfacique par analogie avec phénomènes convectifs ("l'onde transporte de l'énergie")
- Tuyaux sonores pas vraiment au programme, mais ça peut tomber
Ondes chap.1 : ondes de d'Alembert (Cours et exos)
- ondes sonores dans solide (modèle continu tout de suite, pas de passage micro->macro et d'approximation continue "en cours de route")
- d'Alembert par coeur (1D seulement pour l'instant, pas laplacien), expression célérité par coeur
- savoir que phénomène décrit est forcément réversible
- savoir que célérité ondes varie comme raideur/inertie
- retrouver ordre de grandeur du module d'Young à partir du modèle microscopique des chaînes d'atomes liés par des ressorts, l'ordre de grandeur des interactions atomiques étant connu
- Corde libre et fixées à ses deux extrémités : savoir retrouver les modes par une méthode graphique, mais aussi par calcul purement mathématique
- Corde de Melde : par le calcul, interprétation : existence d'un phénomène de résonance quand la fréquence d'excitation est une fréquence propre
- exos : attention, rien n'a encore été fait sur réflexion-transmission. Pourquoi pas en exo, mais partir du principe que les étudiants sont vierges sur ce sujet pour le moment
13:03 Publié dans Colles | Lien permanent | Commentaires (0)
04/03/2023
Programme de colle S19 : lundi 06 - vend 10 mars
Ondes chap.2 : ondes sonores dans fluides (Cours)
- demander à un.e étudiant.e démo d'Alembert 1D, après avoir linéarisé les 3 équations. Doit pouvoir être fait sans énoncé
- NB1 : pour linéariser la déf du coeff de compressibilité (déf à partir de V ou rho, peu importe), je demande aux étudiants de faire Taylor-Young sur rho(P) (S est constante) autour de la situation d'équilibre (P0,S0). De nombreuses versions (livres, cours) me semblent physiquement et mathématiquement très contestables sur ce calcul
- NB2 : la démo "en lagrangien", à partir du mouvement d'une particule de fluide, sera traité en exo
- Ecriture cpx OPPH
- demander à un.e étudiant.e correspondance entre opérateurs diff et opérateurs cpx (utilisation nabla comme moyen mnémotechnique)
- la suite du cours n'a pas encore été traitée : HPgm de colle
Ondes chap.1 : ondes de d'Alembert (Cours et exos)
- demander à un.e étudiant.e démo ondes sonores dans solide (modèle continu tout de suite, pas de passage micro->macro et d'approximation continue "en cours de route")
- d'Alembert par coeur (1D seulement pour l'instant, pas laplacien), expression célérité par coeur
- savoir que phénomène décrit est forcément réversible
- savoir que célérité ondes varie comme raideur/inertie
- demander à un.e étudiant.e de retrouver ordre de grandeur du module d'Young à partir du modèle microscopique des chaînes d'atomes liés par des ressorts, l'ordre de grandeur des interactions atomiques étant connu
- Corde libre et fixées à ses deux extrémités : savoir retrouver les modes par une méthode graphique, mais aussi par calcul purement mathématique
- Corde de Melde : par le calcul, interprétation : existence d'un phénomène de résonance quand la fréquence d'excitation est une fréquence propre
- exos : attention, rien n'a encore été fait sur réflexion-transmission. Pourquoi pas en exo, mais partir du principe que les étudiants sont vierges sur ce sujet pour le moment
Optique ondul chap.4 : Michelson (Exos)
pour compléter la colle si besoin, mais pas le coeur du programme de colle
14:36 Publié dans Colles | Lien permanent | Commentaires (0)
24/02/2023
Programme de colle S18 : lundi 27 - vend 03 mars
Ondes chap.1 : ondes de d'Alembert (Cours)
- demander à un étudiant la démo de d'Alembert sur la corde vibrante
- NB : je fais ici le choix de ne pas faire apparaître les équations de couplage, je n'introduis donc pas la "projection verticale de la tension du brin de droite sur la brin de gauche"
- d'Alembert par coeur (1D seulement pour l'instant, pas laplacien), expression célérité par coeur
- savoir que phénomène décrit est forcément réversible
- savoir que célérité ondes varie comme raideur/inertie
- demander à un étudiant de retrouver ordre de grandeur du module d'Young à partir du modèle microscopique des chaînes d'atomes liés par des ressorts, l'ordre de grandeur des interactions atomiques étant connu
- demander à un étudiant démo ondes sonores dans solide (modèle continu tout de suite, pas de passage micro->macro et d'approximation continue "en cours de route")
- Corde libre et fixées à ses deux extrémités : savoir retrouver les modes par une méthode graphique uniquement (pour le moment)
- CHAPITRE PAS terminé
Optique ondul chap.4 : Michelson (Cours et exos)
- Point de vue perso, utilisé en cours : sur le schéma "réel" de l'interféromètre, les RL doivent être dessinés colinéaires aux axes des bras. Les angles entre RL et normales aux miroirs (pour calcul ddm) ne doivent être dessinés que sur les schémas équivalents
- deux types de schémas équivalents :
-- celui avec une source "primaire" et les deux miroirs en lame d'air ou coin d'air
-- celui avec deux sources secondaires cohérentes, les miroirs n'apparaissent plus
- à demander à un étudiant : calcul p(M) dans plan focal lentille CV de projection (avec les deux schémas équivalents possibles)
- à demander à un étudiant (ddm par coeur ici) exploitation expression ddm : allure figure interférence, ordre décroît quand on s'écarte du centre de l'écran, rayon des anneaux, faire rentrer les anneaux pour tendre vers le contact optique, que voit-on en lumière blanche ? + réglages des faisceaux !
- à demander à un étudiant : calcul ddm en coin d'air (en l'assimilant à lame d'air d'épaisseur variable), les RL arrivant avec une incidence normale sur le coin, puis exploitation : allure figure interférence, expression interfrange, écarter les franges pour approcher le contact optique, que voit-on en lumière blanche + réglages des faisceaux !
18:56 Publié dans Colles | Lien permanent | Commentaires (0)
06/02/2023
Programme de colle S17 : lundi 20 - vend 24 février
Optique ondul chap.4 : Michelson (Cours : partie significative)
- Point de vue utilisé en cours : sur le schéma "réel" de l'interféromètre, les RL doivent être dessinés colinéaires aux axes des bras. Les angles entre RL et normales aux miroirs (pour calcul ddm) ne doivent être dessinés que sur les schémas équivalents
- deux types de schémas équivalents :
-- celui avec une source "primaire" et les deux miroirs en lame d'air ou coin d'air
-- celui avec deux sources secondaires cohérentes, les miroirs n'apparaissent plus
- à demander à un.e étudiant.e : calcul p(M) dans plan focal lentille CV de projection (avec les deux schémas équival. possibles) + réglages des faisceaux incident et émergent !
- à demander à un.e étudiant.e (ddm par coeur ici) exploitation expression ddm : allure figure interférence, ordre décroît quand on s'écarte du centre de l'écran, rayon des anneaux, faire rentrer les anneaux pour tendre vers le contact optique, que voit-on en lumière blanche ?
- coin d'air PAS ENCORE traité
- vidéo illustrant le cours (présente également tous les réglages du Michelson) :
https://www.youtube.com/watch?v=WxUIiStThU0
Optique ondul chap.3 : Trous Young, élargissement spatial et spectral de la source (Cours et exos)
- TD sera fait mardi, mais on peut déjà poser des exos (bien guider)
- demander à un.e membre du trinôme : démo expression ordre p(M) trous Young dans conditions std, puis allure éclairement sur écran (numérotation des franges)
- demander à un.e membre du trinôme : démo expression ordre p(M) trous Young dans conditions Fraunhofer
- Effet de l'introduction d'une lame de verre
- la généralisation au cas des fentes est issue de l'observation expérimentale, aucun élément théorique exigible à ce sujet (pas d'onde plane, u.S1S2 etc.)
- Comparaison avec l'expérience : enveloppe de diffraction (différence trous / fentes)
- effet déplacement spatial de la source (calcul), en déduire dépendance éclairement avec distance entre deux sources dans cas doublet, puis démo qualitative du critère de brouillage des franges pour source étendue.
Ce critère sur Δp (à définir précisément) doit pouvoir être énoncé par coeur
- cas du doublet spectral (proche), justification qualitative (ou quantitative) des battements spatiaux de l'éclairement. Enoncer, par analogie avec le cas de l'extension spatiale, le critère sur Δp (à définir précisément) traduisant brouillage des franges dans le cas d'une raie de faible largeur
Signification/définition de "Δp" doit être maîtrisée dans cas spatial et spectral
- cas lumière blanche : prédire nombre de franges visibles (environ 2 de chaque côté de la frange achromatique), notion de spectre cannelé, en un point de l'écran -> dénombrement cannelures et valeurs des longueur d'ondes éteintes
- réseau plan : expression ddm, montage expérimental (conditions Fraunhofer), minimum de déviation
Optique ondul chap.2 : Superposition d'ondes (Cours)
Optique ondul chap.1 : Modèle scalaire (Cours)
09:19 Publié dans Colles | Lien permanent | Commentaires (0)
29/01/2023
Programme de colle S16 : lundi 30 - vend 03 février
Optique ondul chap.3 : Trous Young, élargissement spatial et spectral de la source (Cours et exos)
- TD sera fait mardi, mais on peut déjà poser des exos (bien guider)
- demander à un.e membre du trinôme : démo expression ordre p(M) trous Young dans conditions std, puis allure éclairement sur écran (numérotation des franges)
- demander à un.e membre du trinôme : démo expression ordre p(M) trous Young dans conditions Fraunhofer
- Effet de l'introduction d'une lame de verre
- la généralisation au cas des fentes est issue de l'observation expérimentale, aucun élément théorique exigible à ce sujet (pas d'onde plane, u.S1S2 etc.)
- Comparaison avec l'expérience : enveloppe de diffraction (différence trous / fentes)
- effet déplacement spatial de la source (calcul), en déduire dépendance éclairement avec distance entre deux sources dans cas doublet, puis démo qualitative du critère de brouillage des franges pour source étendue.
Ce critère sur Δp (à définir précisément) doit pouvoir être énoncé par coeur
- cas du doublet spectral (proche), justification qualitative (ou quantitative) des battements spatiaux de l'éclairement. Enoncer, par analogie avec le cas de l'extension spatiale, le critère sur Δp (à définir précisément) traduisant brouillage des franges dans le cas d'une raie de faible largeur
Signification/définition de "Δp" doit être maîtrisée dans cas spatial et spectral
- cas lumière blanche : PAS ENCORE traité
- réseau plan : PAS ENCORE traité
Optique ondul chap.2 : Superposition d'ondes (Cours)
- demander à un(e) étudiant(e) de refaire la démo mettant en évidence les différentes conditions nécessaires à la réalisation d'interférences (avec énoncé)
- ils doivent aussi pouvoir les énoncer par coeur
- attention aux pb de vocabulaire : DeltaPhi = "différence de retard de phase" (au point M ? en S à l'émission ?)
Pour deux ondes :
- ddm, ordre d'interférences
- demander à un(e) étudiant(e) d'établir la formule de Fresnel avec les complexes (en supposant donc les deux sources cohérentes), après que la cohérence des deux sources (secondaires nécessairement) a été affirmée
- critère milieu frange brillante, milieu frange sombre
- Pour N ondes avec ddm en progression arithmétique : Fresnel n'est plus au programme, calcul math à la place (avec énoncé détaillé)
Optique ondul chap.1 : Modèle scalaire (Cours)
- écriture math d'une onde monochromatique (ne pas porter son attention sur l'amplitude, uniquement sur la phase), vocabulaire "retard de phase"
- interroger au moins un(e) étudiant(e) sur la notion de train d'onde : sinus limité dans le temps, retard de phase à l'émission est aléatoirement distribué, pas de corrélation avec le train suivant. Lien en odg avec largeur pic en fréquence
- train d'onde = modèle pour source quasi-monochromatique (raie), mais peut-être utilisé pour des raisonnements qualitatifs (ou d'odg) dans le cas de spectres larges
- Déf éclairement, pourquoi un carré ? pourquoi une moyenne ? (se contenter d'une comparaison entre temps caractéristique, notion filtrage passe-bas)
- cohérence spatiale n'est pas au programme, il s'agit juste de savoir que deux points d'une source émettent des trains d'onde dont les retards de phase n'ont aucun lien entre eux
- Définition chemin optique à partir de la durée propagation (c'est son intérêt fondamental, l'expression fonction de indice et distance a été dém ensuite)
- expression chemin optique en fonction distance parcourue dans milieu homogène (le cas général, indice non-uniforme a été vu, mais pas essentiel)
- expression donnant l'évolution du retard de phase au cours de la propagation en fonction du chemin optique (par coeur, éventuellement démo, mais pas essentiel)
- Th. Malus (admis) à énoncer en précisant bien qu'il ne faut pas de diffraction "en route"
- traduction du stigmatisme en optique ondulatoire
EMag chap.8 : Induction (Cours et exos)
- révisions PCSI
- ARQS magnétique : MAmpère comme en statique, puis validité loi des noeuds
- demander à un(e) étudiant(e) la démo justifiant de négliger le courant de déplacement
- Attention : seule la version de Faraday de PCSI est au programme de spé (i.e. flux à travers une surface délimitée par un circuit filiforme). Un contour de Faraday immatériel n'est pas explicitement au programme
- les courants de Foucault n'ont donc pas été traités
- Coeff d'inductance : définition et intérêt, L dans cas solénoïde, énergie magnétique (bobine seule, et bobines couplées)
- (la demo de l'expression du couple de Laplace sur cadre rectangulaire est HPgm de colle)
13:09 Publié dans Colles | Lien permanent | Commentaires (0)
21/01/2023
Programme de colle S15 : lundi 23 - vend 27 janvier
Optique ondul chap.2 : Superposition d'ondes (Cours)
- demander à un(e) étudiant(e) de refaire la démo mettant en évidence les différentes conditions nécessaires à la réalisation d'interférences (avec énoncé)
- ils doivent aussi pouvoir les énoncer par coeur
- attention aux pb de vocabulaire : DeltaPhi = "différence de retard de phase", au point M ou à l'émission ?
Pour deux ondes :
- ddm, ordre d'interférences
- demander à un(e) étudiant(e) d'établir la formule de Fresnel avec les complexes (en supposant donc les deux sources cohérentes), après que la cohérence des deux sources (secondaires nécessairement) a été affirmée
- critère milieu frange brillante, milieu frange sombre
- Pour N ondes avec ddm en progression arithmétique : Fresnel n'est plus au programme, calcul math à la place (avec énoncé détaillé)
Optique ondul chap.1 : Modèle scalaire (Cours)
- écriture math d'une onde monochromatique (ne pas porter son attention sur l'amplitude, uniquement sur la phase), vocabulaire "retard de phase"
- interroger au moins un(e) étudiant(e) sur la notion de train d'onde : sinus limité dans le temps, retard de phase à l'émission est aléatoirement distribué, pas de corrélation avec le train suivant. Lien en odg avec largeur pic en fréquence
- train d'onde = modèle pour source quasi-monochromatique (raie), mais peut-être utilisé pour des raisonnements qualitatifs (ou d'odg) dans le cas de spectres larges
- Déf éclairement, pourquoi un carré ? pourquoi une moyenne ? (se contenter d'une comparaison entre temps caractéristique, notion filtrage passe-bas)
- cohérence spatiale n'est pas au programme, il s'agit juste de savoir que deux points d'une source émettent des trains d'onde dont les retards de phase n'ont aucun lien entre eux
- Définition chemin optique à partir de la durée propagation (c'est son intérêt fondamental, l'expression fonction de indice et distance a été dém ensuite)
- expression chemin optique en fonction distance parcourue dans milieu homogène (le cas général, indice non-uniforme a été vu, mais pas essentiel)
- expression donnant l'évolution du retard de phase au cours de la propagation en fonction du chemin optique (par coeur, éventuellement démo, mais pas essentiel)
- Th. Malus (admis) à énoncer en précisant bien qu'il ne faut pas de diffraction "en route"
- traduction du stigmatisme en optique ondulatoire
EMag chap.8 : Induction (Cours et exos)
- révisions PCSI
- ARQS magnétique : MAmpère comme en statique, puis validité loi des noeuds
- demander à un(e) étudiant(e) la démo justifiant de négliger le courant de déplacement
- Attention : seule la version de Faraday de PCSI est au programme de spé (i.e. flux à travers une surface délimitée par un circuit filiforme). Un contour de Faraday immatériel n'est pas explicitement au programme
- les courants de Foucault n'ont donc pas été traités
- Coeff d'inductance : définition et intérêt, L dans cas solénoïde, énergie magnétique (bobine seule, et bobines couplées)
- (la demo de l'expression du couple de Laplace sur cadre rectangulaire est HPgm de colle)
EMag chap.7 : Magnétostatique (Exos)
- Déterminations de B avec Ampère, nbeux exemples traités
- rappel : courant 2D hors programme, donc donner suffisamment d'indications si apparaissent dans un exo
- dipôle magnétostatique
- Forcément poser à un(e) étudiant(e) le calcul du rapport gyromagnétique (atome H cas classique)
- ordre de grandeur par analyse dim : magnéton Bohr
- moment magnétique volumique max d'un aimant, actions subies par un dipôle placé dans champ ext (formules doivent être données, l'effet du couple doit pouvoir être justifié via la formule)
EMag chap.6 (un seul élément du cours)
- Forcément poser à un(e) étudiant(e) le calcul énergie électrostatique du noyau
00:46 Publié dans Colles | Lien permanent | Commentaires (0)
12/01/2023
Programme de colle S14 : lundi 16 - vend 20 janvier
ATTENTION : l'induction sera revue cette semaine (à distance)
HORS PROGRAMME cette semaine
Optique ondulatoire chap.1 : Modèle scalaire (Cours uniquement)
- écriture math d'une onde monochromatique (ne pas porter son attention sur l'amplitude, uniquement sur la phase), vocabulaire "retard de phase"
- interroger au moins un(e)(e) étudiant sur la notion de train d'onde : sinus limité dans le temps, retard de phase à l'émission est aléatoirement distribué, pas de corrélation avec le train suivant. Lien en odg avec largeur pic en fréquence
- train d'onde = modèle pour source quasi-monochromatique (raie), mais peut-être utilisé pour des raisonnements qualitatifs (ou d'odg) dans le cas de spectres larges
- Déf éclairement, pourquoi un carré ? pourquoi une moyenne ? (se contenter d'une comparaison entre temps caractéristique, notion filtrage passe-bas)
- cohérence spatiale n'est pas au programme, il s'agit juste de savoir que deux points d'une source émettent des trains d'onde dont les retards de phase n'ont aucun lien entre eux
- Définition chemin optique à partir de la durée propagation (c'est son intérêt fondamental, l'expression fonction de indice et distance a été dém ensuite)
- expression chemin optique en fonction distance parcourue dans milieu homogène
- évolution du retard de phase en fonction de la durée de propagation (PUIS en fonction du chemin optique)
- le chapitre n'est pas terminé, la suite est hors programme de colle
EMag chap.7 : Magnétostatique (Cours et exos)
- Déterminations de B avec Ampère, nbeux exemples traités : coeur de la colle
- rappel : courant 2D hors programme, donc donner suffisamment d'indications si apparaissent dans un exo
- dipôle magnétostatique
- Forcément poser à un(e) étudiant(e) le calcul du rapport gyromagnétique (atome H cas classique)
- ordre de grandeur par analyse dim : magnéton Bohr
- moment magnétique volumique max d'un aimant, actions subies par un dipôle placé dans champ ext (formules doivent être données, l'effet du couple doit pouvoir être justifié via la formule)
EMag : chap.4 à 6 (Cours et exos)
- Effet Hall : à demander à un(e) étudiant(e)
- analogie avec gravitation
- Condensateur et dipôle électrostatique
- Forcément poser le calcul de V et E créés par dipôle EStat à au moins un(e) étudiant(e)
- ATTENTION : calcul énergie électrostatique du noyau PAS ENCORE TRAITE
Révisions d'optique géométrique
-utile de poser des questions de cours, sur les fondamentaux, pas les détails
(cf. questionnaire de révision sur ce blog, ça donne une idée de ce que j'appelle les fondamentaux)
- éviter les exos basés sur les lois de Descartes, plutôt tracés de RL et études d'instruments d'optique
23:59 Publié dans Colles | Lien permanent | Commentaires (0)
08/01/2023
Programme de colle S13 : lundi 09 - vend 13 janvier
EMag chap.7 : Magnétostatique (Cours et exos)
- Ampère : attention, seul le fil infini et le cylindre infini ont été traités : à demander à un(e) étudiant(e)
- Si d'autres exemples : bien guider
- rappel : courant 2D hors programme, donc donner suffisamment d'indications si apparaissent dans un exo
EMag : chap.4 à 6 (Cours et exos)
- Potentiel, énergie potentielle, relations avec champ élec
- cartes de champ : étudiants doivent pouvoir évaluer l'ordre de grandeur du champ à partir d'un réseau d'équipotentielles
- Effet Hall : à demander à un(e) étudiant(e)
- analogie avec gravitation
- Condensateur et dipôle électrostatique
- Forcément poser le calcul de V et E créés par dipôle EStat à au moins un(e) étudiant(e)
- Forcément poser un exo condensateur / ou le cours condensateur : si condensateur plan, ils doivent être autonomes sur la démarche. Si autre condensateur, les guider un peu
- ATTENTION : calcul énergie électrostatique du noyau PAS ENCORE TRAITE
Révisions d'optique géométrique
-utile de poser des questions de cours, sur les fondamentaux, pas les détails
(cf. questionnaire de révision sur ce blog, ça donne une idée de ce que j'appelle les fondamentaux)
- éviter les exos basés sur les lois de Descartes, plutôt tracés de RL et études d'instruments d'optique
13:11 Publié dans Colles | Lien permanent | Commentaires (0)
18/12/2022
Programme de colle S12 : mardi 03 - vend 06 janvier
EMag : chap.4 à 6 (Cours et exos)
- Potentiel, énergie potentielle, relations avec champ élec
- cartes de champ : étudiants doivent pouvoir évaluer l'ordre de grandeur du champ à partir d'un réseau d'équipotentielles
- analogie avec gravitation
- Condensateur
- Forcément poser un exo condensateur / ou le cours condensateur : si condensateur plan, ils doivent être autonomes sur la démarche. Si autre condensateur, les guider
- attention : dipôle EStat + énergie électrostatique du noyau pas encore été traité
EMag : chap.3 Gauss (Cours et exos)
- de nombreux exemples faits ensemble, méthode doit être maîtrisée
EMag : chap.2 Maxwell (Cours)
- vérifier que equ Maxwell sont connues. Attention, nous n'avons pas encore vu tous les équivalents intégrales
- tester aussi relation locale conservation énergie EMic (dans vide, puis avec porteurs mobiles), pas de démo, vérifier compréhension physique des termes
- niveau cours, tester les membres du trinôme sur un des deux thèmes suivants :
1- accélération particule chargée entre deux plaques avec ddp U
2- mouvement plan circulaire dans champ B, deux possibilités :
- soit on suppose le caractère circulaire, et les étudiants trouve le rayon en polaire
- soit ils utilisent la base de Frenet (nveaux pgm) pour tout démontrer (trajectoire plane, circulaire, rayon)
12:05 Publié dans Colles | Lien permanent | Commentaires (0)