ANNEXES du TP n°7 - Dipôle à résistance négative

Dipôle à résistance négative : Enoncé et correction MPonts PSI 2009

I.A. — Étude d'un dipôle

On considére le circuit de la figure 1 dans lequel l'amplificateur opérationnel est supposé idéal.

☐ 1 — Dans l'hypothèse d'un fonctionnement idéal de l'amplificateur opérationnel en régime linéaire, déterminer l'impédance d'entrée $Z_e = V_e/I_e$ du circuit de la figure 1. Tracer la partie de la caractéristique $V_e = f(I_e)$ en régime linéaire : on exprimera les limites du domaine de validité de V_e en fonction de V_{sat} , R_2 et R_3

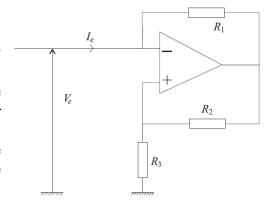


FIG. 1 – Montage à amplificateur

Arr 2 — Compléter la caractéristique $V_e = f(I_e)$ du circuit de la figure 1 dans les régions qui correspondent à un fonctionnement non-linéaire de l'amplificateur opérationnel : on donnera les expressions $V_e = f(I_e)$ correspondantes en justifiant précisément les domaines de V_e sur lesquels elles sont valides. On précisera les points remarquables.

I.B. — Visualisation expérimentale de la caractéristique du dipôle

On considére à présent le montage de la figure 2. Ce dernier est celui de la figure 1 auquel on a rajouté une résistance R_g et un générateur de fonction idéal qui délivre une tension E(t).

Lorsque la tension du générateur est continue $E(t) = E_0 = \text{cste}$, le couple (V_e, I_e) prend la valeur (V_{e0}, I_{e0}) . Ce point de la caractéristique $V_e = f(I_e)$ est appelé *point de fonctionnement* du circuit.

L'amplificateur opérationnel est encore supposé idéal.

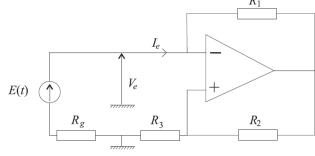


FIG. 2 – Montage avec entrée

- \square 3 Indiquer comment le montage de la figure 2 permet une visualisation à l'oscilloscope de la caractéristique $V_e = f(I_e)$: on précisera les branchements à effectuer et les éventuelles précautions matérielles à prendre.
- \Box 4 Étudier en fonction de la valeur de R_g , les différentes possibilités pour le point de fonctionnement du circuit dans le cas $E_0 = 0$ V.

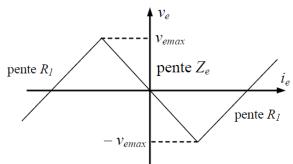
1

Moreggia PC

I. Etude d'un circuit à amplificateur opérationnel

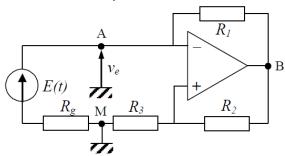
1. L'AO est idéal $(i_+ = i_- = 0)$ et en fonctionnement linéaire $(\epsilon = v_+ - v_- = 0)$.

Par un diviseur de tension, on obtient $v_+ = \frac{R_3}{R_2 + R_3}$, $v_s = v_- = v_e$, et aux bornes de R_1 :

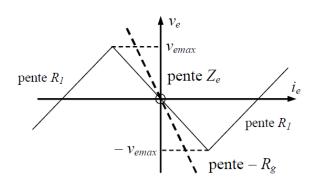

 $v_e - v_s = R_1 \cdot i_e$. On élimine v_s entre les deux équations et $R_3 \cdot (v_e - R_1 \cdot i_e) = (R_2 + R_3) \cdot v_e$.

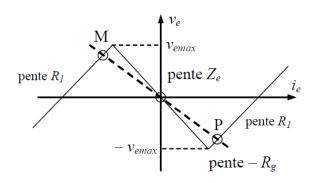
D'où
$$\frac{v_e}{i_e} = Z_e = -\frac{R_1.R_3}{R_2}$$

La limite de validité se trouve pour $v_s = \pm V_{\text{sat}}$, soit $v_e = \frac{\pm R_3}{R_2 + R_3} V_{\text{sat}} = \pm v_{e \text{ max}}$


2. Pour $v_s = \pm V_{sat}$, on obtient $v_e = R_1 \cdot i_e \pm V_{sat}$. La limite étant obtenue pour $i_e = \mp \frac{R_2}{R_1 \cdot (R_2 + R_3)} V_{sat}$

On obtient donc la caractéristique suivante :




3. On veut visualiser à l'oscilloscope v_e et i_e :

On peut mesurer à l'oscilloscope v_e sans précaution particulière en branchant la voie 1 en A et la masse de l'oscilloscope en M. Par contre la mesure de i_e est plus délicate pour des problèmes de masses : on branche la voie 2 entre A et B en passant par une sonde différentielle.

4. Avec E = 0, on obtient un second lien entre v_e et i_e soit $v_e = -R_g.i_e$. On trace cette droite sur le même diagramme que celui de la question 2 :

2