Mécaflu - TD1 : Cinématique des fluides

Exercice 1 : Loi de Poiseuille dans une conduite cylindrique

Pour se souvenir qu'un débit de volume ne se calcule pas toujours par « $v \times S$ »...

Un liquide de masse volumique ρ , s'écoule dans une conduite à section circulaire de rayon r_0 et d'axe Oz avec une vitesse en coordonnées cylindriques de la forme :

$$\vec{v} = v_0 \left(1 - \left(\frac{r}{r_0} \right)^2 \right) \overrightarrow{u_z}$$

1. L'écoulement est-il stationnaire ?

On considère une section droite S de la conduite. Soit un point M de cette section, point situé à une distance r de l'axe de la conduite.

- 2. Dessiner la section et ce point M. L'écoulement est-il uniforme sur une section droite de la conduite ?
- **3.** Calculer le débit volumique D_v à travers une section de la conduite, en fonction de v_0 et r_0 .
- **4.** Quelle est la vitesse moyenne U du liquide sur une section, définie par : $U = \frac{1}{S} \iint_{S}^{\square} \vec{v} \cdot d\vec{S}$?

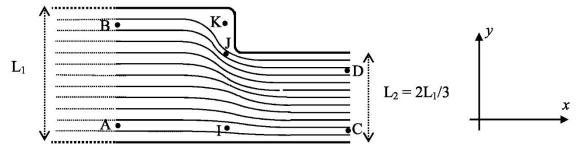
Exercice 2 : Effet d'un rétrécissement sur un écoulement incompressible (CCP PSI 2012)

Pour se familiariser avec les conséquences d'une propriété très importante de ce type d'écoulements

On considère l'écoulement incompressible d'eau liquide dans un canal rectiligne de section rectangulaire. La base de ce canal se situe dans le plan horizontal Oxy. Sa hauteur h=50cm est constante selon z. Ce canal subit localement un brusque rétrécissement, sa largeur passe de L_1 =50cm à L_2 =2 L_1 /3=33cm.

La figure 2 représente les lignes de courant de l'écoulement, de part et d'autre du rétrécissement.

On notera que le champ des vitesses est uniforme sur une section de l'écoulement loin en amont du rétrécissement (au niveau des points A et B par exemple) et loin en aval (au niveau du point C par exemple).



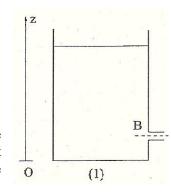
- 1. Au vu de la figure 2, comparer v(J), v(B), v(A) et v(C).
- 2. La vitesse v(A) est de 0,5m.s⁻¹. Déterminer le débit volumique dans la canalisation. En déduire la vitesse v(C).

Exercice 3: Réservoir d'eau

Pour relier la variation de hauteur d'eau dans un réservoir aux débits entrant et sortant

On notera ρ la masse volumique de l'eau, g l'accélération de la pesanteur, et l'on prendra pour valeurs numériques : $\rho = 10^3$ kg.m⁻³ ; g = 9.8 m.s⁻².

On considère le réservoir cylindrique dessiné ci-contre, dont la section horizontale est un disque d'aire S. Ce réservoir est rempli d'eau jusqu'à une certaine altitude z_A (A est un point repérant la surface libre), et percé d'un orifice situé au niveau du point B à hauteur z_B . Cet orifice possède une section droite σ . On note $h \stackrel{\text{def}}{=} z_A - z_B$.



On nomme D_s le débit volumique d'eau sortant par l'orifice B associé à l'écoulement de vidange du réservoir. La surface libre du réservoir et l'extrémité de l'orifice sont en contact avec l'air. Tous les écoulements considérés sont assimilés à des écoulements homogènes et incompressibles.

On fait l'hypothèse $\sigma \ll S$ pour toute la suite du problème. Dans ce cadre, on admet momentanément la loi reliant la vitesse de l'eau en B à la vitesse de la surface libre (point A): $v_B^2 = 2gh + v_A^2$.

On admettra que le champ des vitesses est uniforme sur une section de l'écoulement, au niveau de la surface libre, ainsi qu'à la sortie du réservoir.

- 1. Tracer l'allure plausible des lignes de courant associées à l'écoulement, entre la surface libre et le point B. Quelle relation peut-on écrire entre la vitesse de la surface libre v_A , la vitesse v_B en B, et les sections σ et S?
- **2.** Exprimer la vitesse v_B en fonction de h, S et σ . A simplifier dans la limite où $\sigma \ll S$.
- **3.** En déduire le débit D_s en fonction de h, σ .
- **4.** En appliquant la loi de conservation de la masse à un système ouvert bien choisi, établir l'équation différentielle vérifiée par h(t).
- 5. Résoudre cette équation, et déterminer le temps de vidange.
- **6.** On considère à présent qu'un robinet déverse un débit D_e constant et connu dans le réservoir. Exprimer la hauteur d'eau h_s en régime stationnaire.

Attention: il n'est pas possible de considérer un tube de champ joignant <u>l'écoulement tombant du robinet</u> et <u>l'écoulement de l'eau à la sortie du réservoir</u>. En effet, au niveau de l'impact entre le jet sortant du robinet et l'eau du réservoir, le champ des vitesses est difficile à modéliser simplement. Il n'est pas raisonnable de supposer l'existence d'un tube de champ allant de cette zone vers la sortie du réservoir. D'ailleurs, lorsque le niveau d'eau du réservoir n'est pas très faible, il est plus vraisemblable de supposer que l'eau tombant du robinet reste dans la zone supérieure du réservoir, et ne se dirige pas directement vers l'orifice de sortie.

Exercice 4 : Ecoulement à l'intérieur d'un dièdre droit

Un peu de calcul..

Soit dans la région x > 0, y > 0 l'écoulement défini en eulérien par :

 $\vec{v} = k(-x.\vec{u}_x + y.\vec{u}_y)$, k constante positive.

- **1.** Quelle est l'unité de k?
- **2.** L'écoulement est-il stationnaire ?
- 3. Schématiser le vecteur vitesse en différents points de l'écoulement.
- **4.** L'écoulement est-il incompressible ?
- 5. Déterminer le champ d'accélération

Exercice 5 : Carte de champ d'un écoulement potentiel

Pour étudier une carte d'un écoulement potentiel

On considère la carte ci-contre modélisant un écoulement de liquide, et sur laquelle apparaissent des équipotentielles du potentiel des vitesses et des lignes de courant. Le trait épais est une paroi rigide.

- 1. Identifier les lignes de courant et les équipotentielles. Justifier le fait que les équipotentielles sont perpendiculaires aux lignes de vitesse.
- 2. Est-il possible de savoir dans quel sens s'écoule le fluide ?
- 3. Identifier les zones de vitesse élevée et de vitesse faible.
- 4. Comment pourrait-on créer un écoulement possédant ce champ de vitesses ?

Exercice 6: Expansion d'un fluide

Un fluide remplit une sphère de manière homogène de rayon r_0 et de centre 0. A l'instant t=0, on communique aux particules de fluide une vitesse initiale radiale v_{ini} qu'elles conservent ensuite. La particule initialement à la distance r_{ini} du centre 0 acquiert une vitesse $v_{ini} = \frac{r_{ini}}{\tau}$ (où τ est une constante).

- 1. Déterminer le champ eulérien des vitesse à un instant t quelconque.
- **2.** L'écoulement est-il stationnaire, incompressible, potentiel ?
- 3. Obtenir par le calcul le champ des accélérations. Retrouver le résultat sans calcul.

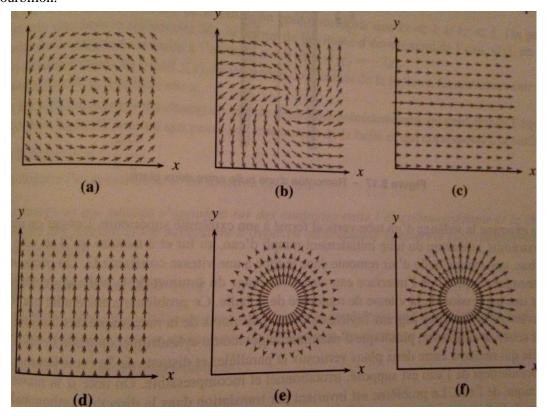
- **4.** On suppose que la répartition de masse est homogène à chaque instant. Déterminer la masse volumique $\rho(t)$ en fonction de la masse volumique initiale ρ_0 :
- grâce à l'équation locale de conservation de la masse (utiliser annexe analyse vectorielle)
- en s'intéressant au volume de la sphère contenant le fluide à un instant quelconque

Réponses :
$$\vec{v}(M, t) = \frac{\vec{OM}}{t + t}$$
 ; $\vec{a}(M, t) = \vec{0}$; $f'(t) = \frac{f'_0}{(1 + t/t)^3}$.

Exercice 7 : Caractère tourbillonnaire sur carte de champ

Pour repérer le caractère tourbillonnaire sur des cartes

Les six cartes de champ ci-dessous représentent des écoulements bidimensionnels stationnaires. Ces écoulement sont-ils tourbillonnaires (i.e. au moins une zone telle que $\overrightarrow{rot}(\vec{v}) \neq \vec{0}$)? Lorsqu'ils le sont, indiquer le sens du vecteur tourbillon.



Exercice 8: Autre exemple d'écoulement

Le champ eulérien des vitesses d'un écoulement bidimensionnel est donné en coordonnée cartésiennes par $\vec{v} = (kx; ky; 0)$.

- 1. Cet écoulement est-il stationnaire ? Incompressible ? Tourbillonnaire ?
- 2. Calculer l'accélération d'une particule de fluide.
- **3.** Représenter l'évolution d'un « carré » de fluide de côté α entre les instants t et t+dt.

Exercice 9: Autre exemple d'écoulement

On considère un écoulement plan dépendant du temps caractérisé par un champ de vitesse eulérien : $\vec{v} = a\vec{e_x} + (bt + c)\vec{e_y}$ où a, b et c sont des constantes.

- 1. Quelles sont les dimensions de a, b et c?
- **2.** L'écoulement est-il compressible ? Rotationnel ?
- 3. Existe-t-il un potentiel des vitesses ? Si oui, le déterminer en le prenant nul en x=y=0.
- **4.** Déterminer l'accélération d'une particule de fluide dans ce champ de vitesse.