Transport de charge : Conservation de la charge – Conducteurs ohmiques

1. Débit, conservation, loi des nœuds

- 1.1. L'intensité du courant est un débit de charge à travers une surface
- 1.2. Vecteur intensité surfacique (ou vecteur densité de courant)
- 1.3. Equations locale et intégrale de conservation de la charge
- 1.4. Loi des nœuds : conservation du débit en régime stationnaire

2. Transport de charge dans un conducteur ohmique

- 2.1. Electrons de conduction d'un métal
- 2.2. Loi d'Ohm locale
- 2.3. Modèle de Drude : modèle microscopique de la conduction électrique
- 2.4. Critique du modèle de Drude : libre parcours moyen des électrons
- 2.5. Domaine de validité de la loi d'Ohm locale
- 2.6. Résistance électrique en fonction des dimensions d'un conducteur filiforme
- 2.7. Puissance volumique dissipée par effet Joule

3. Analogies conduction électrique / conduction thermique

Intro:

Ce chapitre traite du transport de charge électrique. Il précise un certain nombre de concepts utilisés lors de l'étude des circuits électriques. Contrairement à l'étude des circuits électriques, effectuée en assimilant les fils à des lignes, on modélise ici le transport de charge en 3D : les fils ont une section non-nulle.

La première partie de ce chapitre est analogue à tous les chapitres traitant d'un phénomène de transport. On y verra la notion de *débit de charge*, de *vecteur densité de courant* associé, *l'équation locale de conservation de la charge* et la démonstration de la *loi des nœuds* en régime stationnaire.

La deuxième partie traite du transport du courant électrique dans les conducteurs ohmiques, modèle bien adapté à la conduction électrique dans les métaux. On donnera la loi d'Ohm locale ainsi qu'un modèle microscopique de la conduction, l'expression de la résistance en fonction des dimensions du conducteur, pour finir avec l'expression mésoscopique de l'effet Joule.

1. <u>Débit, conservation, loi des nœuds</u>

1.1. L'intensité du courant est un débit de charge à travers une surface

- Donner l'expression mathématique de cette définition. Donner les unités de chacun des termes
- ❖ Comme tout débit, l'intensité peut-être algébrique. Quelle est la signification physique de son signe ?
- ❖ Dans cette modélisation 3D, quelle grandeur orientée joue le rôle de la flèche qui donnait en 1D le sens conventionnel du courant dans une branche (étude circuits électriques) ?

Il n'est pas nécessaire de connaître la nature des porteurs de charge et encore moins leur sens de déplacement pour définir le courant électrique. Le sens du courant :

- ne représente pas le sens de déplacement des <u>porteurs de charges</u> (sans unité)
- mais le sens du déplacement de la grandeur « <u>charge électrique »</u> (coulombs) ces deux sens n'ont aucune raison d'être identiques.

Ne pas confondre transport de charge et transport de porteurs de charge!!

1.2. Vecteur intensité surfacique (ou vecteur densité de courant)

- ❖ Donner la définition du vecteur densité de courant à partir de l'intensité électrique
- Quelles informations physiques contient ce vecteur?

Remarque de vocabulaire : Le vecteur « intensité surfacique » est parfois qualifié de vecteur densité volumique de courant. Ne pas se laisser piéger par cette appellation : cette intensité surfacique est bien en $A.m^{-2}$. Le qualificatif « volumique » fait référence à la modélisation $\underline{3D}$ du transport de charge, par opposition aux deux autres modélisations possibles : surfacique 2D et linéique 1D (cette dernière a été utilisée lors de l'étude des circuits).

Contrairement au cas du transport de masse par un fluide, il faut ici distinguer deux types de charges électriques : la charge *mobile* et la charge *immobile*. Dans un conducteur solide (fil de cuivre par exemple), chaque atome du cristal <u>libère</u> en moyenne un électron (environ). Cet « électron libre » porteur d'une charge électrique (-e) est, comme son nom l'indique, libre de se déplacer dans le fil. L'atome ayant libéré cet électron est devenu un <u>cation</u> porteur d'une charge électrique (+e), et reste immobile : c'est lui qui constitue le fil à l'intérieur duquel se déplacent les électrons libres.

Porteurs de charge mobile ou fixes

Dans un conducteur électrique solide, les **ions du réseau cristallin sont fixes** et ne participent pas au courant. Ce sont les **porteurs libres qui « s'écoulent »** et sont responsables du courant électriques.

Dans un milieu globalement neutre:

 $\rho_{mobiles} = -\rho_{fixes}$

Il existe plusieurs types de porteurs mobiles dans les conducteurs ordinaires :

- les électrons : dans les métaux
- les « trous » dans les semi-conducteurs (cf. analyse documentaire à venir)
- les anions et cations dans les solutions électrolytiques
- ❖ Par analogie avec le transport de masse par un fluide, donner la relation entre le vecteur densité de courant et la vitesse moyenne de déplacement des électrons libres (appelée aussi « vitesse de dérive »)

1.3. Equations locale et intégrale de conservation de la charge

- ❖ Donner l'équation intégrale de la charge en vous appuyant sur un schéma pour définir les termes
- ❖ Donner l'équation locale de conservation de la charge (sous-entendue « mobile »)
- ❖ Ces deux écritures concernent-elle un système fermé/ouvert ? macro, méso, microscopique ?
- ❖ Sans faire tout le calcul, et en considérant un transport unidimensionnel rectiligne, donner les étapes permettant de démontrer l'équation locale à partir de l'équation intégrale
- Comment faire la démonstration dans le cas général 3D ?

1.4. Loi des nœuds : conservation du débit en régime stationnaire

Définition d'une ligne de courant

<u>Définie à un instant t donné</u>, c'est la courbe **tangente** en chacun de ses points au **vecteur densité de courant**. Elle est **orientée** dans le sens de \vec{j} .

Définition d'un tube de courant

L'ensemble des lignes de courant s'appuyant sur un contour fermé forme une surface nommée tube de courant.

Propriété en régime stationnaire : « Loi des nœuds »

En écriture <u>locale</u> (i.e. avec dérivées spatiales) :

$$div(\vec{j}) = 0$$
« \vec{j} est à flux conservatif »

En écriture intégrale (i.e. sans dérivées spatiales) :

$$I_s = I_e$$

Le débit de charge est conservatif :

A tout instant t fixé, l'intensité est la même en toute section d'un tube de courant

2. Transport de charge dans un conducteur ohmique

On décrit maintenant la conduction électrique dans les milieux vérifiant la loi d'Ohm, à l'échelle mésoscopique. On prendra comme exemple concret le cuivre (un métal), mais la plupart des notions sont valables pour les solutions électrolytiques diluées.

2.1. Electrons de conduction d'un métal

Dans un métal, chaque atome libère environ un électron, libre alors de se déplacer à l'intérieur du métal. On rappelle que le métal est globalement neutre : il y a autant de cations que d'électrons libres.

Sachant que la masse volumique du cuivre est $\rho = 8900 \ kg.m^{-3}$, et que sa masse molaire est de $M = 63,6 \ g.mol^{-1}$, évaluer le nombre d'électrons libres par unité de volume du métal

Les électrons libres peuvent être assimilés à un gaz parfait monoatomique : en l'absence de champ électrique extérieur appliqué, ils ont un mouvement désordonné d'agitation thermique, de moyenne nulle (moyenne statistique sur un grand nombre d'électrons). La vitesse quadratique est de l'ordre de $10^5 \, m. \, s^{-1}$.

Lorsqu'un champ électrique existe à l'intérieur du métal, à ce mouvement désordonné d'agitation thermique se superpose un *mouvement d'ensemble* des électrons libres. La vitesse d'ensemble correspond à <u>la vitesse moyenne</u> (moyenne statistique sur un grand nombre d'électrons) qui est alors non nulle. Elle est de **qq mm**. s^{-1} !! On parle aussi de « vitesse de dérive ».

La relation entre le vecteur densité de courant $\vec{j}(M,t)$ et la vitesse moyenne $\vec{v}(M,t)$ est souvent exprimée en fonction de la densité de porteurs de charges mobiles n(M,t) et de la charge q de chaque porteur (unités respectives : m^{-3} et C).

- . Ecrire cette relation.
- Donner un ordre de grandeur de la charge volumique mobile ρ_{mob} dans le cuivre.
- ❖ En déduire un ordre de grandeur de la vitesse de dérive

Dans certains conducteurs, il existe plusieurs types de porteurs de charge :

- différents ions dans une solution électrolytique
- électrons et trous dans les semi-conducteurs
- ❖ En notant que le débit total de la grandeur 'charge électrique' est la somme des débits associés à chaque type de porteurs, généraliser la relation précédente.

2.2. Loi d'Ohm locale

C'est l'écriture de la loi d'Ohm à l'échelle mésoscopique :

- à I correspond \vec{j} (cf. début du chapitre)
- à U correspond le champ électrique \vec{E} (on admet pour le moment ce lien, sera vu en électromagnétisme)

Loi d'Ohm locale

Dans un conducteur ohmique, le vecteur densité de courant est colinéaire de même sens au champ électrique :

$$\vec{j} = \gamma \vec{E}$$

Cette **relation de proportionnalité** définit la **conductivité** du métal : $\gamma > 0$

Remarques:

- La conductivité s'exprime en $S.m^{-1}$.
- Ordre de grandeur $\gamma_{Cu} = 6 \ 10^7 \ S. \ m^{-1}$ On définit *la résistivité du métal* ρ (en $\Omega.m$) comme l'inverse de la conductivité (à ne pas confondre avec la charge volumique) : $\rho \stackrel{\text{def}}{=} \frac{1}{\gamma}$

2.3. Modèle de Drude : modèle microscopique de la conduction électrique

L'expérience montre que certains conducteurs vérifient la loi d'Ohm : lorsqu'une tension U est appliquée aux extrémités du fil, le courant électrique I qui apparaît est proportionnel à la tension. Ces conducteurs sont dits ohmiques. A l'échelle mésoscopique, cela équivaut à la loi d'Ohm locale.

Le modèle de Drude (1900) est une tentative de démonstration de la loi d'Ohm locale depuis l'échelle microscopique. C'est donc un modèle de physique statistique : on étudie le mouvement moyen des porteurs. Nous donnerons les ingrédients physiques du modèle statistique, mais ne le détaillerons pas. En effet, on peut montrer que les collisions des électrons sur les cations du réseau (responsables de la résistance électrique) peuvent être assimilées à une force de frottement fluide équivalente. C'est ce formalisme simplifié que nous utiliserons. On pourra trouver la version statistique (ne regarder que celle en régime continu) sur la page wikipedia: http://fr.wikipedia.org/wiki/Modèle de Drude

Idée clef du modèle:

- la tension appliquée génère un champ électrique (considéré uniforme) au sein du métal
- ce champ électrique accélère les électrons de conduction colinéairement à lui-même (cf. PCSI-PTSI)
- cette accélération est compensée par les chocs des électrons avec les cations du réseau cristallin
- dans le modèle de Drude, ce sont les cations qui génèrent cette « résistance » au passage du courant

Ingrédients du modèle statistique :

- les cations du réseau sont fixes
- les électrons mobiles n'interagissent pas à distance entre eux, ni avec les cations (Gaz Parfait)
- un choc entre un électron mobile et un cation est considéré de durée nulle : il est instantané
- la vitesse de l'électron après la collision est totalement décorrélée de sa valeur avant le choc
- la vitesse après le choc est aléatoire, la moyenne de cette vitesse est nulle
- entre deux chocs, l'électron est soumis à la force électrique (champ électrique associé à la tension U)
- la durée moyenne entre deux chocs est notée τ et caractérise le matériau

Modèle simplifié : effet des cations = force de frottements fluide

On applique une tension U au métal à l'instant t=0. On admet (temporairement dans ce cours) qu'un champ électrique uniforme \vec{E} , associé à U, apparaît dans le métal.

Dans un conducteur ohmique, les interactions entre les électrons libres et le réseau de cations peuvent être modélisées par une force de frottements fluide.

- En appliquant la RFD à un électron, et en notant $-\alpha \vec{v}$ la force de frottement fluide, établir l'expression de la vitesse de l'électron en fonction du temps. On fera apparaître un temps caractéristique τ dont on donnera l'expression.
- Quelle est la vitesse de l'électron en régime permanent ? A exprimer en fonction de τ .

On note que le vecteur vitesse de l'électron est colinéaire au champ électrique. En négligeant l'existence de l'agitation thermique (cohérent avec notre choix de ne pas utiliser de modèle statistique), tous les électrons atteignent la même vitesse en régime permanent.

- ❖ En déduire la loi d'ohm locale
- \bullet D'après la conductivité du cuivre, estimer un ordre de grandeur de τ .

2.4. Critique du modèle de Drude : libre parcours moyen des électrons

L'idée essentielle du modèle de Drude est d'expliquer l'origine de la résistance électrique par les chocs des électrons de conduction sur les cations fixes du réseau. Une conséquence évidente du modèle est que le « libre parcours moyen » des électrons (la distance moyenne parcourue entre deux chocs) doit être de l'ordre de grandeur de la distance entre deux cations : soit environ 1 angström (0,1 nm).

La mesure de la conductivité du cuivre nous a permis d'en déduire la valeur du temps τ . Le modèle statistique complet (cf. wikipedia) montre que ce temps τ s'identifie avec la *durée moyenne entre deux collisions*. Cela nous permet ici d'évaluer l'ordre de grandeur du libre parcours moyen, et de le comparer à la prévision du modèle de Drude à température ambiante.

- En assimilant les électrons à un GParfait monoatomique, estimer leur vitesse quadratique moyenne
- En déduire le libre parcours moyen des électrons dans le réseau de cations
- Conclure (valeur conductivité du cuivre donnée à température ambiante)

Le succès de ce modèle vient du fait qu'il permet de décrire de manière satisfaisante certains phénomènes :

- l'effet Hall (effet d'un champ magnétique stationnaire et uniforme, hors programme)
- la propagation des ondes électromagnétiques dans les métaux

Le modèle convenable est quantique, et l'origine physique de la résistance électrique provient :

- des défauts du réseau cristallin (lacunes, impuretés, dislocations)
- des collisions des électrons avec les « phonons » (particules fictives associées aux modes de vibration du réseau cristallin): il y donc bien une composante de la résistance due aux collisions des électrons avec le réseau, même si cette description doit être quantique

2.5. Domaine de validité de la loi d'Ohm locale

La démonstration que nous avons faite – modèle de Drude simplifié, tension U constante – montre que la loi d'Ohm locale n'est vérifiée que pour des temps $t \gg 10^{-14}$ s.

Dans un métal, le temps caractéristique de l'établissement du régime permanent est de l'ordre de $au \sim 10^{-14} s$.

Tant que l'excitation (ici la tension U appliquée au conducteur, associée au champ électrique) varie avec une fréquence très inférieure à $1/\tau$, on peut alors considérer que la loi d'ohm est valable dans un conducteur ohmique. A plus haute fréquence, le régime transitoire n'a pas le temps de s'atténuer, alors même un conducteur ohmique ne vérifie pas la loi d'ohm.

Généralisation de la loi d'Ohm au cas des régimes variables

La loi d'ohm locale établie en régime continu se généralise au cas des **régimes lentement variables** tant que la période T des variations du champ électrique (régime harmonique) est telle que :

 $f \ll 10^{14} Hz$

Pour des champs plus rapidement variables, on peut introduire une conductivité complexe, ce qui signifie simplement que le courant n'a plus le temps de s'aligner sur le champ électrique (temps de réponse trop grand). A très haute fréquence, le courant tend même vers zéro, le conducteur apparaissant donc comme un filtre passe-bas (entrée = champ électrique, sortie = courant).

2.6. Résistance électrique en fonction des dimensions d'un conducteur filiforme

On considère un tronçon de conducteur rectiligne, de section S et de longueur L. Le champ électrique est dirigé le long du conducteur (selon $\overrightarrow{u_x}$), et on le suppose uniforme. Le courant volumique \overrightarrow{j} est aussi uniforme. La face d'entrée est portée au potentiel V_A , celle de sortie au potentiel V_B . On se place en régime permanent.

- **Donner** les relations entre :
 - champ électrique \vec{E} et tension $(V_A V_B)$ (si vue en PCSI-PTSI, sinon admise)
 - l'intensité I et la densité volumique de courant \vec{j}
- ❖ En déduire l'expression de la résistance du conducteur en fonction de sa conductivité et de ses dimensions

2.7. Puissance volumique dissipée par effet Joule

Définition de la puissance volumique reçue par les porteurs de charge

$$\delta P_{joule} \stackrel{\text{\tiny def}}{=} \boldsymbol{p_v} d\tau$$

Pour passer de l'échelle mésoscopique à l'échelle macroscopique, il suffit d'intégrer :

$$P_{joule} = \iiint_{volume\ V} p_v\ d\tau$$

Expression de la puissance volumique reçue

La puissance volumique p_v reçue par les porteurs de charge et fournie par le champ électrique s'écrit :

$$p_v = \vec{j} \cdot \vec{E}$$

<u>Démonstration</u> (à l'échelle microscopique) de cette expression de la puissance volumique :

Les hypothèses simplificatrices du modèle microscopique sont les mêmes que celles du modèle de Drude simplifié que l'on a utilisé :

- un seul type de porteurs, de densité notée n(M, t)
- on ne calcule pas de moyenne statistique, ce qui nécessite « d'oublier » l'agitation thermique
- la vitesse d'un porteur s'identifie alors à la vitesse moyenne des porteurs
- Donner l'expression de la puissance reçue par un porteur de charge mobile en fonction du champ électrique et de la vitesse
- En considérant tous les porteurs de charge mobiles contenus dans un volume élémentaire du conducteur, en déduire l'expression de la puissance reçue par ces porteurs
- Faire apparaître le vecteur densité de courant, et conclure

Discussion autour de cette expression:

- Préciser les unités de chaque terme, et vérifier l'homogénéité de cette expression
- \diamond Dans le cas d'un conducteur ohmique, donner les deux expressions de p_v en fonction de la conductivité
- ❖ A quelles formules connues ces trois écritures vous font-elles penser ?

Puissance volumique dissipée par effet Joule

Lorsque les porteurs se déplacent dans un **milieu support** (fil de cuivre, solution électrolytique), ils subissent des **interactions** avec les éléments du milieu (cations, molécules du solvant).

Ces interactions peuvent être assimilées à un « frottement » qui

convertit intégralement <u>la puissance reçue par les porteurs</u> en <u>énergie thermique du milieu</u> : c'est l'effet Joule.

<u>Remarques</u>: Il est rare que cette distinction soit faite dans les énoncés de concours, car il est rare de rencontrer des situations où la puissance reçue par les porteurs n'est pas intégralement transférée au réseau.

3. Analogies conduction électrique / conduction thermique

NB : Dans le cours d'électromagnétisme (à venir), nous définirons le potentiel électrique (V en volts) à partir du champ électrique par $\vec{E} = -\overrightarrow{grad}(V)$

*	Donner	les analogues thermiques des grandeurs/expression électriques suivantes (préciser les unités) :
		intensité électrique
		tension électrique
		conductivité électrique
		loi d'ohm intégrale
		loi d'ohm locale, domaine de validité
		expression de la résistance électrique d'un conducteur rectiligne
		puissance volumique dissipée par effet Joule
		loi des nœuds, domaine de validité
		vitesse de dérive des électrons libres
		charge volumique positive des cations du réseau
	П	modèle de Drude

En relation avec le cours d'électromagnétisme, le bloc 1 étudie le transport de charges et les milieux conducteurs en présentant un modèle microscopique. Pour sensibiliser les étudiants à l'aspect complexe de la matière, le professeur est invité à conduire une critique du modèle historique de Drude en comparant le libre parcours moyen d'un électron libre avec la distance interatomique du réseau. La conductivité électrique sera réutilisée lors de l'étude des ondes électromagnétiques dans les conducteurs (effet de peau et réflexion sur un métal).

Notions et contenus	Capacités exigibles
1. Transport de charge	
1.1. Conservation de la charge	
Densité volumique de charge électrique $ ho$, vecteur densité de courant électrique $m{j}$.	Passer d'une description microscopique (porteurs de charges, vitesse des porteurs) aux grandeurs mésoscopiques ρ et ${\bf j}$.
	Décrire les différents types de porteurs de charge. Faire la distinction entre charges mobiles et charges fixes.
Intensité du courant électrique.	Écrire l'intensité comme le flux du vecteur densité de courant électrique à travers une surface orientée.
Bilan de charge.	Établir l'équation locale traduisant la conservation de la charge électrique en coordonnées cartésiennes à une dimension.
	Citer l'équation locale dans le cas tridimensionnel et en interpréter chacun des termes.
Régime stationnaire.	Définir une ligne de courant et un tube de courant.
	En régime stationnaire, exploiter le caractère conservatif du vecteur densité de courant

	électrique. Relier cette propriété à la loi des nœuds usuelle de l'électrocinétique.
1.2. Conducteur ohmique	
Loi d'Ohm locale.	Relier le vecteur densité de courant au champ électrique dans un conducteur ohmique. Citer l'ordre de grandeur de la conductivité du cuivre.
Modèle de Drude.	En régime stationnaire, établir une expression de la conductivité électrique à l'aide d'un modèle microscopique.
Résistance d'un conducteur cylindrique.	Établir l'expression de la résistance d'un câble cylindrique parcouru uniformément par un courant parallèle à son axe.
Puissance électrique. Effet Joule.	Établir l'expression de la puissance volumique reçue par un conducteur ohmique. Interpréter l'effet Joule.
	Approche documentaire : décrire la conductivité des semi-conducteurs, les types de porteurs, l'influence du dopage.