
Moreggia PC 1 

Electromagnétisme Chap.7 – Activités 
Magnétostatique – Théorème d’Ampère – Dipôles magnétiques 

 

5. Exemples de calculs du champ à l’aide du Théorème d’Ampère 
 

5.2 Cas classiques 

 

 

 

 

 

 

 

Activité 3 : Champ créé par un solénoïde rectiligne infini  

 

Le solénoïde est caractérisé par sa « densité linéique de spires » : le nombre de spires par 

mètre 𝑛. On négligera les espaces entre les fils et on admet que le champ est nul à l’extérieur 

du solénoïde. 

 

A. Visualiser l’animation suivante, en faisant varier la longueur du solénoïde (option 

« tracé »), et observer l’évolution des lignes de champ en-dehors du solénoïde : 

http://ressources.univ-

lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/solenoide.html 

 

B. Quel argument permet de supposer que le champ est nul à l’extérieur quand la longueur 

est infinie ? 

 

C. Déterminer le champ en tout point intérieur au solénoïde 

D. Exprimer le déplacement élémentaire dans le système de coordonnées cylindriques (inutile 

ci-dessus) 

 

 

Activité 1 : Champ créé par une fil rectiligne infini  

 

A. Appliquer le Théorème d’Ampère pour déterminer le champ créé par un fil rectiligne infini. 

 

B. Exprimer le déplacement élémentaire dans le système de coordonnées cylindriques (inutile ci-

dessus) 

 

 

 

Activité 2 : Cylindre rectiligne infiniment long  

 

On note 𝑗 la densité de courant qui parcourt le cylindre, supposée uniforme 

 

A. Quelle est la relation entre 𝑗 et le courant 𝐼 qui circule dans le cylindre ? 

B. Déterminer le champ magnétique en tout point de l’espace. 

 

 

http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/solenoide.html
http://ressources.univ-lemans.fr/AccesLibre/UM/Pedago/physique/02/electri/solenoide.html
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Activité 4 : Bobine torique  

 

Un tore est une forme géométrique symétrique par rapport à un axe (Oy), et définie de la 

manière suivante. Un contour est dessiné dans le plan contenant l’axe (Oy). Sa rotation 

complète autour de (Oy) engendre un tore. 

 

Si le contour est un cercle, le tore obtenu est à section circulaire. Si le contour est un rectangle, 

le tore obtenu est à section rectangulaire. 

 

On considère la bobine torique ci-dessus, constituée par un ensemble de spires carrées jointives 

parcourues par un courant I, chacune étant enroulée selon une section du tore. 

 

 

❖ Exprimer le champ créé en tout point de l’espace, en fonction de I et du nombre total de 

spires N 
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7. Dipôle magnétique 
 

7.2 Moment magnétique atomique : rapport gyromagnétique 

 

 

7.3 Moment magnétique atomique : magnéton de Bohr 

 

 

 

Activité 5 : Rapport gyromagnétique de l’électron  

 

On se place dans le cadre du modèle planétaire classique de l’atome d’hydrogène. 

On suppose l’orbite de l’électron circulaire autour du noyau. 

 

A. Montrer que le mouvement de l’électron est uniforme. 

B. Etablir l’expression du moment cinétique de l’électron par rapport au centre de l’atome 𝐿𝑂⃗⃗ ⃗⃗⃗ 
en fonction du rayon 𝑅 de son orbite et de sa vitesse 𝑣 

 

L’électron sur son orbite est assimilable à une boucle de courant (spire de courant). 

On traduit ci-dessous la modélisation corpusculaire du courant (l’électron en orbite) en la 

modélisation continue 1D (spire de courant). 

A. En considérant un tour complet de l’électron sur son orbite, exprimer l’intensité I de la 

spire en fonction des grandeurs 𝑒, 𝑅 et 𝑣 associées à l’électron. 

 

C. En déduire l’expression du moment magnétique de l’électron en rotation. 

D. En déduire une relation entre moment magnétique et moment cinétique 

 

 

 

Activité 6 : Magnéton de Bohr  

 

Dans le modèle de l’atome proposé par Bohr, le moment cinétique orbital 𝐿𝑂⃗⃗ ⃗⃗⃗ des électrons est 

quantifié, il ne peut prendre qu’un nombre dénombrable de valeurs. Sa norme s’écrit donc : 

𝐿𝑛 = 𝑛ℏ 

avec ℏ ≝
ℎ

2𝜋
 la constante de Planck « réduite », que l’on peut donc interpréter comme 

représentant le quantum de moment cinétique. 

 

A. En utilisant l’expression du rapport gyromagnétique établi dans le cas classique, en déduire 

le quantum de moment magnétique : « le magnéton de Bohr » 

 

B. Retrouver cette expression, à une constante près, par analyse dimensionnelle en supposant 

que le magnéton de Bohr s’exprime bien à partir des grandeurs : 𝑒, 𝑚, ℎ 

 

C. Faire l’application numérique 

 

 

 

 


