REVISION DIAGRAMMES E-pH - COURS + EXERCICES

Questions de cours pour révision

Acide-base en solution aqueuse

- 1. Définition d'un acide, d'une base.
- 2. Définition de la constante d'acidité d'un couple acide-base. Relation entre *pH* et *pKa*. Domaines de prédominance en fonction du pH

Précipitation en solution aqueuse

- 3. Définir le produit de solubilité d'un solide ionique (AgCl par exemple)
- 4. Dans le cas de l'hydroxyde de fer $Fe(OH)_{3(s)}$, repérer son domaine d'existence sur un axe pH, sachant que la solution aqueuse a été préparée en introduisant $10^{-3} mol. L^{-1}$ ions Fe^{3+}

Complexation

- 5. En présence d'ions hydroxydes, l'ion Zn^{2+} peut former les complexes : $Zn(OH)_{2(s)}$; $Zn(OH)_4^{2-}$ Définition ligand, constante globale de formation (puis de dissociation), constante successive de formation (puis de dissociation)
- 6. L'ion métallique Cu^{2+} peut s'associer au ligand NH_3 pour former les complexes $[Cu(NH_3)]^{2+}$ et $[Cu(NH_3)_2]^{2+}$. Positionner les domaines de prédominances de ces trois espèces sur un axe pNH_3 , en faisant apparaître les pK_d des constantes de dissociation successives.

Oxydo-réduction en solution aqueuse

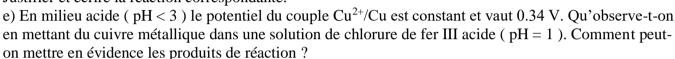
- 7. Définition d'une oxydation, d'une réduction. Définition d'un oxydant, d'un réducteur.
- 8. Rappeler ce que signifie la valeur du nombre d'oxydation d'un atome au sein d'un édifice.
- 9. Rappeler la méthode usuelle pour calculer un nombre d'oxydation.
- 10. Calculer le nombre d'oxydation dans les cas suivants : titane dans $TiO(OH)_2$; (après avoir dessiné le schema de Lewis) oxygène dans H_2O_2 ; chrome dans $Cr_2O_7^{2-}$ puis CrO_4^{2-} .
- 11. Comment interpréter un nombre d'oxydation non entier ?
- 12. Méthode pour équilibrer une demi équation électronique, en l'illustrant sur le couple $O_{2(q)}/H_2O$
- 13. Appliquer cette méthode et en déduire la relation de Nernst associée au couple $Fe^{3+}/Fe_{(s)}$.
- 14. Idem pour les deux couples de l'eau $O_{2(q)}/H_2O$ et $H_2O/H_{2(q)}$
- 15. On considère l'oxydation du fer solide par l'eau en milieu acide. Enoncer la méthode générale pour équilibrer une réaction redox, et appliquer cette méthode pour écrire l'équation-bilan de cette réaction.
- 16. Règle du gamma et force des oxydants et des réducteurs : sur une échelle en potentiel standard E^0 , placer qualitativement les deux couples redox impliqués ci-dessus, sachant que la réaction d'oxydation du fer par l'eau se déroule spontanément.

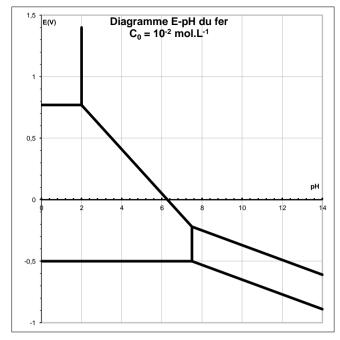
Diagramme E-pH

- 17. En quoi la superposition de deux diagrammes E-pH en solution aqueuse (chacun étant associé à un élément chimique) est-elle intéressante ?
 - Enoncer le critère graphique permettant d'affirmer que deux espèces mises dans le même bécher réagissent spontanément ensemble. Comment identifier graphiquement les produits de la réaction ? Enoncer le critère inverse, permettant d'affirmer que deux espèces sont stables l'une en présence de l'autre.
- 18. Dans un diagramme E-pH, quel type de réaction permet de passer d'une espèce située à gauche d'une frontière verticale à l'espèce située à droite ?
 - Même question pour deux espèces séparées par une droite horizontale. Puis une frontière oblique.
- 19. Que représente une frontière entre deux espèces solubles ? Puis une frontière entre une espèce soluble et une espèce solide ?
- 20. Qu'est-ce que la concentration de tracé ? Pourquoi a-t-elle peu d'impact sur le tracé du diagramme ?

1. Exploitation du diagramme potentiel-pH du fer :

On donne ci-contre le diagramme potentiel-pH du fer, pour lequel les espèces considérées sont : Fe_s , Fe^{2+} , Fe^{3+} , $Fe(OH)_{2s}$ et $Fe(OH)_{3s}$.


a) Placer les espèces sur le diagramme.


b) On donne : E° ($O_{2(gaz)}/H_2O$) = 1,23 V ; E°

 $(H^+/H_{2(gaz)}) = 0.00 \text{ V}$. Tracer les droites relatives à ces deux couples pour $P(O_2)$ et $P(H_2) = 1$ bar.

- c) Pourquoi les conventions ci-dessus n'ont-elles que peu d'effet sur le tracé du diagramme de l'eau ?
- d) On introduit de la poudre de fer dans une solution aqueuse désaérée :
- acide de pH = 1 : écrire la réaction complète et décrire les phénomènes observés ;
- basique de pH = 13 : mêmes questions.
- d) Un précipité d'hydroxyde de fer II se transforme rapidement et change de couleur au contact de l'air.

Justifier et écrire la réaction correspondante.

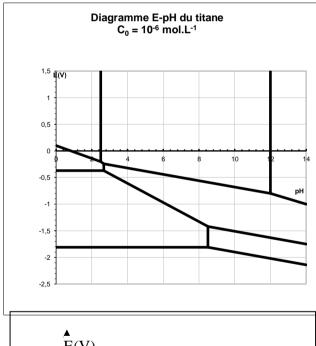
2. Diagramme potentiel-pH du titane :

On donne ci-contre le diagramme potentiel-pH du titane, tracé en considérant les espèces :

- Ti, Ti(OH)₂, Ti(OH)₃, TiO(OH)₂ solides;
- Ti²⁺, Ti³⁺, TiO²⁺, HTiO₃- dissoutes. Attribuer chaque espèce à son domaine.

3. Diagramme potentiel-pH du cadmium:

On donne le diagramme potentiel -pH du cadmium pour une concentration en cadmium dissous égale à 0,01 mol.L⁻¹

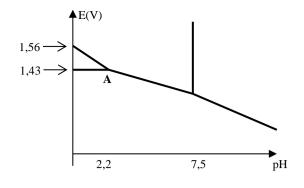

- a) Déterminer la valeur de E° (Cd²⁺/Cd).
- b) Calculer les produits de solubilité relatifs à Cd(OH)2.
- c) Quelle est la pente du segment AB.
- d) Le cadmium peut-il réagir sur l'eau?

4. L'eau de javel (Mines Ponts PSI 03):

On donne le diagramme E-pH du chlore pour une concentration de tracé égale à 0,1 mol.1-1.

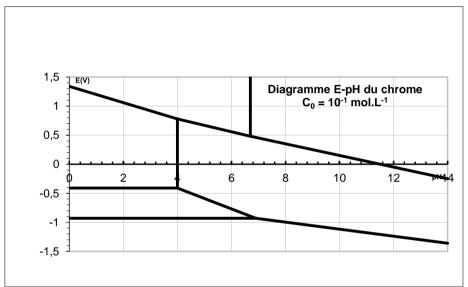
Les seules espèces considérées sont HClO, ClO⁻, Cl₂ et Clen solution aqueuse.

a) Indiquer les domaines de prédominance des différentes espèces du chlore.



b) On considère une solution de dichlore. Que se passe-t-il audelà du pH du point A?

L'eau de javel est une solution aqueuse d'hypochlorite de sodium NaClO et de chlorure de sodium ; elle est préparée par réaction directe entre le dichlore et l'hydroxyde de sodium.


- c) Ecrire la réaction bilan de formation de l'eau de Javel.
- d) L'eau de Javel est-elle stable d'un point de vue thermodynamique ? Justifier.
- e) Que se passe-t-il si l'on mélange de l'eau de Javel avec un détergent acide ? Conclusion ?

Données à 298 K et à pH = 0 : E°_{1} (Cl_{2} / Cl^{-}) = 1,39 V ; E°_{2} ($HClO/Cl_{2aq}$) = 1,59 V.

5. Etude du diagramme potentiel-pH du chrome (CCP PC 05) :

Le diagramme potentiel-pH simplifié du chrome est donné ci-contre. Les espèces considérées sont Cr (s), Cr²⁺, Cr³⁺, Cr₂O₇²⁻, CrO₄²⁻ et Cr(OH)₃ (s). Superposer les droites correspondant aux deux couples de l'eau.

Le tracé a été réalisé pour une concentration totale en chrome dissous égale à 10⁻¹ mol.L⁻¹ et en considérant qu'il y a égalité des concentrations à la frontière entre deux espèces dissoutes.

- a) Attribuer aux diverses espèces les différents domaines repérés par les numéros 1 à 6.
- b) Etablir l'équation de la frontière entre Cr³⁺ et Cr(OH)₃ (s).
- c) A partir des données, établir l'équation de la frontière entre Cr(OH)₃ (s) et Cr²⁺ à une constante près.
- d) Ecrire la demi-équation d'oxydoréduction entre Cr(OH)₃ (s) et CrO₄²⁻. En déduire la pente de la droite séparant leurs domaines.
- e) Que se passe-t-il au point A par élévation du pH? Ecrire la réaction correspondante.
- f) On constate expérimentalement que le chrome métal ne réagit pas avec l'eau dans un vaste domaine de pH. Expliquez ce phénomène en vous appuyant sur la lecture du diagramme potentiel-pH.
- g) Ecrire la réaction du dichromate de potassium $Cr_2O_7^{2-}$ sur l'eau. A quelle condition sur le pH les solutions de dichromate de potassium sont-elles stables (aucun calcul n'est attendu) ?

Données à 298 K:

Potentiels standard d'oxydoréduction à 298 K et à pH = 0

couple	$\operatorname{Cr}^{2+}/\operatorname{Cr}(s)$	Cr ³⁺ / Cr ²⁺	$Cr_2O_7^{2-} / Cr^{3+}$	O ₂ (g) / H ₂ O
E° (en V)	-0,91	-0,41	1,33	1,23

pKs
$$(Cr(OH)_3 (s)) = 31.0$$
; $Cr_2O_7^{2-} + H_2O = 2 CrO_4^{2-} + 2 H^+ K = 10^{-14.4}$

6. Diagramme E-pCN, complexation (MPonts PSI 2009):

En solution aqueuse, outre l'or métal, on rencontre l'or au degré d'oxydation I et au degré d'oxydation III.

1- En considérant les valeurs des potentiels standard, quel équilibre chimique peut-on écrire entre ces différentes espèces ? Comment s'appelle cette réaction ?

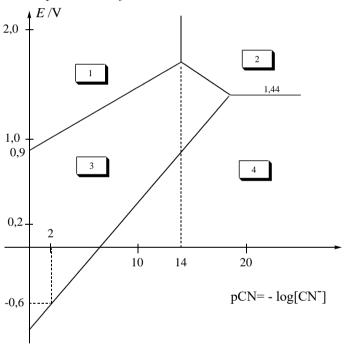
En présence d'ions cyanure, les ions de l'or forment les complexes : $[Au(CN)_2]^-$ et $[Au(CN)_4]^-$

2- Calculer les potentiels standard des couples :

 $[Au(CN)_2]^{-}/Au$ (noté E°_{1}) et $[Au(CN)_4]^{-}/[Au(CN)_2]^{-}$ (noté E°_{2}).

Quel est l'effet des ions cyanure sur la stabilité de Au⁺ en solution aqueuse ?

Les déchets électroniques (ou scraps) sont considérés comme des matériaux intéressants à recycler car ils contiennent d'une part des métaux précieux : Au (2 à 3 g/ tonne), Ag, Pt....et d'autre part des métaux lourds, dangereux pour l'environnement. A titre de comparaison, la teneur moyenne des minerais naturels d'or ont une teneur moyenne de 5g / tonne...


Après démantèlement, suivi d'un traitement mécanique,un des procédés de recyclage de l'or à partir de scraps consiste en un traitement hydrométallurgique.

Lixiviation cyanurée :

Le diagramme E-pCN de l'or est un analogue des diagrammes E-pH. Il est adapté à l'étude de phénomènes engageant l'or ou ses ions en milieu cyanuré (CN $^{-}$). En abscisse figure la valeur de pCN=-log[CN $^{-}$]. La concentration de tracé est prise égale à $c_{tra}=10^{-3}$ mol.L $^{-1}$. La température est fixée à 25° C.

- **3-** Identifier chacune des espèces présentes 2,0 dans le diagramme. Attribuer à chaque espèce son domaine de stabilité (existence ou prédominance) en justifiant succinctement. On raisonnera par analogie avec les diagrammes potentiel-pH.
- **4-** Déterminer à l'aide du diagramme la valeur de la constante globale de formation du complexe $\left[Au(CN)_4\right]^-$, la comparer avec celle donnée en annexe.
- **5-** Déterminer par calcul le coefficient directeur de la droite séparant les domaines 2 et 3.

On cherche à utiliser le diagramme pour comprendre le procédé d'extraction de l'or métallique des minerais. On opère pour une valeur fixée $[CN^{-}]=10^{-2}$ mol. L^{-1} (et pH=10,5), on injecte du dioxygène sous la pression de 0,2 bar.

- 6- Calculer dans ce procédé le potentiel d'oxydoréduction relatif au couple $O_2(g)/H_2O$ (avec une décimale). Que se passe-t-il au contact de l'or ? Justifier succinctement en utilisant le diagramme puis proposer une équation de la réaction.
- 7- En quoi ce processus permet-il d'extraire de l'or ? Quel genre d'étape faudra-t-il envisager ultérieurement pour récupérer Au(s) ? Quel réactif proposez-vous (vous écrirez l'équation-bilan) ?

Données : Z(Au)=79 ; M(Au)=197 g.mol⁻¹

Potentiels standard à 298 K: $E^{\circ}(Au^{3+}/Au(s))=1,50 \text{ V}$; $E^{\circ}(Au^{3+}/Au^{+})=1,41 \text{ V}$; $E^{\circ}(Au^{+}/Au(s))=1,68 \text{ V}$;

 $E^{\circ}(O_2(g)/H_2O) = 1,23 \text{ V}$; $E^{\circ}(Zn^{2+}/Zn(s)) = -0,76 \text{ V}$; $E^{\circ}(Zn(CN)_4^{2-}/Zn(s)) = -1,26 \text{ V}$;

 $E^{\circ}(AgCl(s)/Ag(s))=0.22 \text{ V}; E^{\circ}(Cl_2/Cl_)=1.36 \text{ V}$

Constantes globales de formation: $\beta \left([Au(CN)_2]^{-} \right) = 10^{38} ; \beta \left([Au(CN)_4]^{-} \right) = 10^{56} ; \beta \left([Au(CI)_4]^{-} \right) = 10^{22}$